Reducing the Branch Power Cost in Embedded Processors Through Static Scheduling, Profiling and SuperBlock Formation
نویسندگان
چکیده
Dynamic branch predictor logic alone accounts for approximately 10% of total processor power dissipation. Recent research indicates that the power cost of a large dynamic branch predictor is offset by the power savings created by its increased accuracy. We describe a method of reducing dynamic predictor power dissipation without degrading prediction accuracy by using a combination of local delay region scheduling and run time profiling of branches. Feedback into the static code is achieved with hint bits and avoids the need for dynamic prediction for some individual branches. This method requires only minimal hardware modifications and coexists with a dynamic predictor.
منابع مشابه
Energy Efficient Branch Prediction
Energy efficiency is of the utmost importance in modern high-performance em-bedded processor design. As the number of transistors on a chip continues to in-crease each year, and processor logic becomes ever more complex, the dynamicswitching power cost of running such processors increases. The continual progres-sion in fabrication processes brings a reduction in the feature size...
متن کاملPre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems
Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...
متن کاملThree Architectural Models for Compiler-Controlled Speculative Execution
To e ectively exploit instruction level parallelism, the compiler must move instructions across branches. When an instruction is moved above a branch that it is control dependent on, it is considered to be speculatively executed since it is executed before it is known whether or not its result is needed. There are potential hazards when speculatively executing instructions. If these hazards can...
متن کاملPre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems
Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کامل